
A-A079 912 M ASSAC,4USETTS INST OF TEC-i CA4BR!OGE LAB FOR COPUTE--ETC F/G 12/1
AN EFFICIEWd AL50RNITHMA FO DETERMIN143 THE LENGTH OF TH LONGSI ETC Li'AN 80SPLTdO 0 1nFL N ESA7 068

UN1CLASSIFIED UILCS/TIA

El EEEEEEj

tet

MASSACHUSETTS \LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

?41TAC/LsfIT-149

AN EFTICIENI ALGOR1TEM~ FOR DEIE~IIGTHE LENSI'H

CF THE IDNGEST DEAD PATH IN AN "LIFO" BRANCH-AD-B0UND

EXPLORATION SCHEMA

Stefano Pallottino

Tcmmaso Toffoli

La.J
January 1980

[This research was suported in part by Grant
CN00014-75-C-0661, Office of Naval Research,
Cfunded by DARPA, and in part by the Consiglio

Nazionale delle Ticherche, Ram, Italy

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

8 01

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

SECURITY CLASSIFICATION OF THIS PAGE (When Does Entered) _________________

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
REPOT DCUMNTATON AGEBEFORE COMPLETING FORM

1%, RPORT UM-- GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

S. TYPE OF REPORT h PERIOD COVERED

Legt o heLogetDead Path in an bufoj _ _ _ _nE it
'1 6. PERFORMING ORG. REPORT NUMBER

7 AUTHOR(*)S. CONTRACT OR GRANjT *LMER(a)

g~tefac/ Pallottino ThWfTliI 14EA75-C N/66 ER

9. PEFRIGORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

M/LaboratoryfoCoptrSineAE&WOKUINMBR

I .CONTROLLING OFFICE NAME AND ADDRESS-01-0

4. MONIT RING AGENCY NAME & ADDRESS(iI different from Controlltn7 Office) 1-S. SECURITY CLASS. (of tis report)

A,3 unclassified

IS&. OECL ASS$IFIC ATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of tisl Report)

This document has been approved for public release and sale;
its distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. It different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and Identify by biackl number)

Length of longest dead path
branch-and-bound
LIMO tree search

0. ABSTRACT (Continue on reverse side flneceeeanv end identify by block number)

length of the longest dead path (LIDP) is a widely used parameter in
estimating the efficiency of branch-and-bound optimization algorithmis that
employ the LIFO exploration schema. Thanks to tw.o original theorem, w- ar
able to present a particularly attractive procedure for detenrmining of the
LWDP. In fact, this procedure requires a numrber of storage variables w'hich is
'independent of problemi size and very small; moreover, the procedure is self-
contained in the sense that it can be externally attached to any LIMV branch-

DD I'SAI. 1473 EDITION oF I Nov so is OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Vile. DOt, ffatered)

. - 'D kI

SaCUI? CLASSIICAION Of THIS PAGEfWh DO* Wum4fo

* SIECURITY CLASSIPICATIOM OP TWIS OACI[WS., Da Allam

AN EFFICIENT ALGORITHM FOR DETERMINING THE LENGTH 01F
THlE LONGEST DEAD PATII IN AN OLIFO" BRANCH-AND-BOUND
EXPLORATION SCHIEMA*

Stefano Pallottino

J'ditiito jwr le Applicazioni del Ca lcolo "Mauro Picone," CNR
viale del Polirlinico 137, 00161 Roma, Italy

Tommaso Tolloli
NUIT Laboratory for Computer Science
545 Technology Sq., Cambridge, MA 02139

Abstract. Thc length of the longest dcad path (LLDP) is a widely
used parameter in estimating the efficiency of branch-and-bound optimiza-
Lion algorithmns that emnploy the I1t1' exploration scheina. Thanks to two
original theorems, we are able to presemit a particularly attractive procedure
for determining of the IL1A)I. In fact, this procedure requires a number
of storage variables which is indeprndent of problem size and very small;
moreover, the procedure is self-contained in the sense that it can be exter-
nally attached to any LIFO branch-and- bound program without interfering
with its algorithms and data structures.

Keywords: Length of longest dead pathi, bran ch-and-bou nd, LIFO tree search.

1. Introduction

In a particular tree-exploration scheia for the branch-and-bound (flAB)
optimization method the search is linearized, i.e., movements are allowed only
between adjacent. nodes, and every arc considered in the search is eventually
traversed exactly once in either clirectionIli. In this way, nodes that are en-
countered going dlown the tree are encountered again--in the opposite order---
on the way uip; for this reason, such an exploration schema is called "last-in-
first-out1" (IFllO).I

During an LIFO exploration, the lIA13 algorithm designates a certain sub-
sequence or nodes as increasingly better candidates for the optimum. At the

fThis'reseaich -was su-pported in par~t by Grn Non0014-75-C-0661, Office of NaV~a
Research, funded by D)ARPA, and in part by theConsiglio Nazionale delle Riccrchc,
Roma, Italy

end of the search, the last such node represents the actual optimum. If one
had sufficient foreknowledge, this node could be reached by a direct path fron
the tree root to the node itself; this we shall call the true path. The remaining
explored portion can be visualized as consisting or dead subtrees (i.e., search
failures) attached to the true path. The maximum departure from the true
path, i.e., the length of the longest path in such dead subtrees, is a significant
parameter in evaluating the efficiency of a given BAB algorithm.

While any procedure for determining the length of the longest dead path
(LLI)P) must somehow work in cooperation with the BAB algorithm itself, yet
it would be convenient to have for this a separate, general-purpose module
that can be appended "piggy-hck," as it were--- to an arbitrary LIFO-oriented
BAIA algorithm without inlerfering with the algorithm or requiring it to manage
auxiliary data structures, especially ones distributed over the tree. In the follow-
ing sections we shall illustrate a simple, efficient, and self-contained procedure
which (a) uses a finite, very small amount of storage independent of problem
size, (b) is called in a uniform way by the BAB algorithm at every move on
the tree, and (c) is able to tell the length of the currently longest dead path at
any moment during the search and, in particular, the LLDP at the end of the
search.

2. An informal illustration

Since the IlI, procedure that we are going to describe in no way affects the
operation of the BAIA algorithm, certaiii preliminary conceptual simplifications
are possible. Potentially, the whole search tree is avaiiable to the BAB algo-
rithm. At any node, according to information accumulated during the search,
this algorithm is free to decide in what order to examine the outgoing arcs, and
may ignore altogether the existence or any of them and, consequently, of the
subtrees attached t.o them. On the other hand, the scope of the LLDP procedure
is restricted to that portion of the problen tree which is effectively traversed.
This portion is also a tree, and henceforth will be referred to simply as the tree.
(As customary in computer science parlance, we call tree what in graph theory is
called an arboresrence, i.e., a rooted directed tree.) Since all routing choices are
made ahead by the BAB algorithm, from tile LLDP procedure's viewpoint the
tree is seen as traversed in a preassigned order; during this traversal certain nodes
are successively received as candidates for the optimum, and these candidates
supersede one another in Ithe same order as they appear.

Note that the BAB algorithm is not allowed any "look-ahead;" in other
words, a node can be designated as an optimum candidate only while it is being

2

visited, and not at some later time. Moreover, the last candidate in the sequence
is confirmed as the actual optiniumi only at the end of the exploration, i.e., when
the search returns to the tree's root.

As we shall see, no explicit knowledge of the tree's global structure is re-
quire-d of the LLDJ1 procedure, and the only information that this procedure
needs to receive from the HAB algorithm is of a local nature. Namely, the LLDDP
procedutre will be t-old

(a) when the BABl just Stepped one arc down, or
(b) the BABl just stepped. one arc tip; and
(c) when the current node is designated as the new candidate for the op-

timuim.

For the sake of illustration, we shall examine first a case where only one
optimumi candidate is eventumally found. The complete exploration journey of
Figure la (from START to STOP) "circurmnavigatcs" the tree, coasting from node
to node along arcs, in successive (upward or downward) steps, in such a way
that every arc of the tree is traversed exactly once in each dirction.

4'oo6 T~P'outL- -..

AU ~~~~optimlum P :l02

Fi.I wa amr in lorton jouney lentdotthe lnget dead athe
(dsmteatahed) toth tru path (tikln) b chan he representdio meelfb the

reachedS lone path, erse inl ir Cib, weghr ofocnvne thelogs deadh

3

subtrees explored before finding the optimum arc drawn on the left, and the
others on the right of the true path.

If the situation illustrated in Figure I a were static, i.e., if one knew beforehand
which arcs belonged to the true path, then computing the LLDP for each of the
dead subtrecs and determining the overall LLDP would be trivial; in this case,
every time that the exploration departed from the true path and entered a dead
subt.ree one would keep track of the distance from the root of that subtree, and
update a "current maximum distance" register every time a greater value were
found.

In practice, there is no way of knowing a priori whether the current can-
didate will turn out to be the actual optimum. This difficulty can be overcome
by keeping two parallel accounts for dead arcs, namely, ACCOUNT I, which will
proceed as if the current candidate were to "win," and ACCOUNT H as if it were to
"loose." Every time the current candidate is replaced by a new one, ACCOUNT I

is suitably reinitialized; both accounts then resume their independent evolution.
More explicitly, ACCOUNT I will work in such a way as to be able to tell the

length of the currently longest (lead path (I1,CLDP) on the hypothesis that the
direct path from the tree root to the current node--which we shall call the open
path were the true path. On the other hand, ACCOUNT H will work in such a
way as to be able at any moment to tell the ILCLDIl on the hypothesis that none
of the optimum candidates encountered so rar represents the actual optimum.
At every reinitialization, i.e., when a new optimum candidate is found by the
BA1 algorithm, ACCOUNT I will interrogate ACCOUNT 1H and obtain the value of
the LCLDP.

To sum up, ACCOUNT I assumes that the true path is known, and only has to
uptdatc the LCLDP when a longer path appears in any subsequently explored
dead.subtree. As we have remarked above for the static evaluation of the LLDP,
such updating activity is trivial (cf. Figure 4). On the other hand, the activity of
ACCOUNT H, which must dynamically preserve enough information about pre-
viously traversed dead subtrees to serve ACCOUNT I's reinitialization needs, is a
bit more complex, and we shall discuss it in more detail below.

3. Dynamic evaluation of the length of the longest dead path

Clearly, the open path evolves dynamically during the exploration. In the
example of Figure 2a, dead subtree 7, which is "shorter" than T2 and would
be neglected in favor of the latter if the open path coincided with the true
path, might become critical in the determination of the longest dead path if the

4

exploration were to back ip along the open path, as shown in Figure 2b, where
subtree T is "longer" than T2.

T j --- T , -- - _

633

.J

(a) b

FIG. 2 Typical situation in the dynamic evaluation of the LLDP. The
open path is indirated by a solid line.

On the other hand, independently of the future course of the exploration, subtree
Ti may be disregarded in comparison with T2, which is already "longer" than T
and may only become even "longer" if the exploration were to back up above
T2'% root. Thus, in this case there is no reason for ACCOUNT II to "remember" the
existence of Ti; only information about root position and length of the longest
path for T2 and T3 is still relevant at this point of the exploration and must be
preserved.

In what follows, we sh-P! formally establish general criteria for deciding what
information about previo, .ly traversed (lead subtrees can be discarded in the
course of the search, and what information must be retained. It will turn out
that at no moment does one have to carry over from previous exploration more
than four independent integer quantities.

First of all, in the light of the above example it is easy to introduce the
following theorem. (With reference to Figure 3, we shall call Ii, 12, and 13 the
"lengths" of any three dead subtrees TI, T2, and T3 that are attached in this
order to the open path; and di, d2, and d3 the distances from each root to the
previous subtree's root or, by default, to the tree's root.)

Timonr.fM I In the situation of Figure 3a, it

(,3) 12 lj 1,

then dead subtri e TI ra; be disrrgardrd in the determination of the LLI)P;
similarly, it

5

(b) 11 12 +d 2 ,

then T2 can be disregarried.
Proof. For any evolution or the open path, inequality (a) implies that

any dead subtree containing T2 will have a length greater than or equal to that
of any dead subtree containing T. On the other hand, inequality (b) implies
that, no matter what fraction ol the open path between r, and r2 is eventually
incorporated in a dead tree containing T2, the LLDP will be independent of 12,

since 14 will give a greater contribution.9

d, L T,

T,, ...
'4

(b)
FIG. 3 Details of tree structure and nomenclature for Theorem 1 (a) and
Theorem 2 (b).

IRrMARK I Only in the case where 12 < I <12 + d2 will ACCOUNT 11 be
unable to decide, without further inor~mation, whether T1 or T2 can be discarded.

Stuppose now that. ACCOIUNT II, while already preserving information about
two dead snbtrees T and T2 (f. lemark I), is requested to consider a third dead
subtree T.. If it is imnxssible to discard any of the three subtrees by pairwise
comparison using Theorem I, then one of them can be discarded in any case in
view of the following theorem.

TulronrM 2 It the conditions for the applicability of Theorem 1 contem-
porarily fail for the pairs (TI, T2) and (T2 , T3) (and, consequently, for the pair
(TI, T3)), i.e., if 2 < Li < 12 + d2 and 13 < 12 < 13 + d3, then dead subtree 7'2
can be disregarded in the determination of the LLDP.

Proof. As the search progresses, eventually part of the open path will be
incorporated into dead subtrees, while the rest will remain in the true path (TP).
Considering the root r2 of subtree T2, two cases are possible:

(a) n G TP;
in this case, since 11 > 12, then dead subtree 7'2 can be discarded.

(b) r2 ITP;
in this case, since 2 < 13 + d3, then dead subtree T2 can be discarded.|

RFMARK 2 At no moment during the exploration does ACCOUNT H
have to retain more information about previously traversed dead subtrees than
that. represented by four integers, namely, the root position and the length of
two particular dead subtrees.

Observe that, owing to its "pessimistic" attitude, ACCOUNT I never
needs to be corrected or reinitialized when a a new optimum candidate is en-
countered. On the ether hand, owing to its "optimistic" attitude, ACCOUNT I
may often prove wrong and must be reinitialized when a new optimum candidate
is encountered. The only information that is required for this reinitialip.tion
is, of course, the length of the currently longest dead path (LCLDP), whi,. on
such occasion coincides with the valuc of 11 in ACCOUNT II.

At the end or the HAll exploration, when the current optimum can-
didate is indeed the actual optimum, the ILCLDP in ACCOUNT I (denoted by I
in Figure 4) will coincide with the L1I1)I, i.e., with the quantity the we set out
to determine.

4. The LLDP procedure DIP

As noted in Section 2, the LLI)P procedure that we have been discuss-
ing is called by the HAB algorithm every time the latter steps up or down or
finds a new optimum candidate. For convenience of implementation, the explicit
version of this procedure that we present below under the name of DIP will
assume that such calls have been lumped into groups each corresponding to
a dip, i.e., an uninterrupted sequence of "down" calls followed by an uninter-
rupted sequence of "up" calls; an "optimum" call may appear between the two
sequences, and either sequence may be empty.

Procedure DIP will be called according to the format

call DIP(down, find, up),

where the integer variables down and up represent respectively the number of
downward and upward steps in a particular dip, and the logical variable find
assumes the value true if a new optimum candidate was found at the bottom
of that dip, and false otherwise.

7

ACCOUNT I

false fid true

Update ils rReinitialize
1.4- rnax(l, d + down) 1-I

d -- max (0,d + down - up di

ACCOUNT II
Add dead branchb

d24-d2 +d 3 1 2 d 3 -Px!-d, 3

FIG. 4 verall truue of the flsPpedueDP

80fas

The procedure itself is illustrated in Figure 4. All internal variables are of

type own integer and are set to 0 at the beginning or the search. Variable up
is renanmed "1'3" in ACCOUNT If only to put in better evidence the regular struc-
ture or the algorithm. In order to siuplify thc program's structure, subscript
3 is always associated with the subtree corresponding to the current dip. The

variables associated with the other two subscripts (1 and 2) are used as needed

to carry over relevant information about at most two previously encountered
dead subtrees, and are set to 0 when not in use.

A FORTRAN listing of procedure DIP together with comments and examples
can be obtained by writing to either of the two authors.

Reference

I1] Giorgio Gallo, Peter L. lammer, and Bruno Simeone, "Quadratic
Knapsack Problems," IX Int. S ymp. on Math. Progr., Budapest, August 1976.

1
9f

OFFICIAL DISTRIBUTION LIST

Defense Technical Information Center Dr. A. L. S1a&osky
Cameron Station Scientific AdvisorAlexandria, VA 22314 Commandant of the Marine Corps

12 copies (Code RD-i)
Washington, D. C. 20380Office of Naval Research , copy

Information Systems Program
Code 437 Office of Naval Research
Arlington, VA 22217 Code 458

2 copies Arlington, VA 22217
1 copy

Office of Naval Research
Branch Office/Boston Naval Ocean Systems Center,Code 91Building 114, Section D Uiadquarters-4omputer Sciences &666 Summer Street Simulation Department
Boston, MA 02210 San Diego, CA 92152

1 copy Mr. Lloyd Z. Maudlin
1 copyOffice of Naval Research

Branch Office/Chicago Mr. E. H. Gleissner536 South Clark Street Naval Ship Research & Development CenterChicago, IL 60605 Computation & Math Department
1 copy Bethesda, MD 20084

1 copyOffice of Naval Research
Branch Office/Pasadena Captain Grace M. Hopper (008)
1030 East Green Street Naval Data Automation OmmandPasadena, CA 91106 Washington Navy Yard

I copy Building 166
Washington, D. C. 20374New York Area 1opy

715 Broadway - 5th floor
New York, N. Y. 10003 Mr. Kin B. Thompson

I copy Tedcnical Director
Information Systems DivisionNaval Research Laboratory (OP-91T)

Technical Information Division Office of Chief of Naval Operations
Code 2627 Washington, D. C. 20350
Washington, D. C. 20375 1 copy

6 copies

Assistant Chief for Technology
Office of Naval Research
Code 200
Arlington, VA 22217

1 copy

Office of Naval Research
Code 455
Arlington, VA 22217

1 copy

